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Abstract of the work

In this project, a multiple model method using neural network has been developed. The
multiple model method is a technique where the uncertainty is not modeled in only one model.
First, multiple models are designed for the uncertainty. Second, each model is scored or
estimated using statistical methods. Based on the score of models, the most suitable model is
selected.

Recently, the researches on the multiple model methods have focused on the dynamic multiple
model methods that combine the multiple model method and Markov jump process (Markov
chain). If the estimated model changes on time and the jump of system obeysthe Markov jump
process, the dynamic multiple model methods are very useful.

However, the weak point of the dynamic multiple model method is that the Markov transition
probability matrix is not generally known. The Markov transition probability matrix defines the
transition probability that a model at the previous time jumps to amodel at the current time. In
real applications, it is difficult to know the Markov probability transition matrix. As a result,
without the correct Markov transition probability matrix, the dynamic multiple method can not

achieve the best performance.

In thisproject, anew multiple model method without Markov jump process is developed. The
neural network is substituted for Markov jump process with unknown transition probability
matrix. Neural network is an artificial intelligence technique for search, classification and
recognition based on the learning process. Fromthe data that has implicitly the model transition,
the neural network is trained for finding the information matched with the Markov transition

probability matrix. Moreover, the developed method isverified using representative simulations.
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1. Introduction

In target tracking, the state of moving object isinferred based on the sensor measurements. In
the target tracking processes, two uncertainty factors are considered. One uncertainty factor isin
the motion of the target. Mathematically, we can describe the motion of the target using the
dynamic equation in the state space. For one dynamic equation, one movement can be modeled.
Practically, it isimpossible for atarget to move based on a fixed dynamic equation. In this case,
the real system that controls the movement of the target cannot realize the motions that are
exactly modeled by the given mathematical dynamic equation. This is called the structural
uncertainty [1]. The other uncertainty factor exists in the sensor system. All sensor systems have
the instrumental errors. In other words, al the measurements are contaminated. Therefore, in
target tracking, the unknown state of target is inferred based on the contaminated sensor
measurements.

The estimation isto extract the information that we want to know from the data that are known
and available. We can say the tracking process contains the state estimation of the target using
sensor measurements. A popular tool for state estimation is the Kalman filter. In the Kalman
filter, two uncertainty factors are modeled using the stochastic systems|[2]. The stochastic model
consists of the plant and measurement models. In the plant model, we can find the plant noise
vector that describes the structural uncertainty. In the measurement model, there is the
measurement noise vector that degrades the accuracy of measurements. If the plant and the
measurement noise vector are suitably chosen, the Kalman filter estimates the state of the target

reducing two uncertainty factors- the structural and the measurement uncertainty.

When the target maneuvers, the Kalman filter cannot optimally estimate the state of the target.
When atarget maneuvers, the dynamic equation used before maneuver is not in effect for state
estimation. In other words, the structural uncertainty for the maneuvering movement cannot be
covered by the plant noise. Asa result, the wrong plant noise degrades the accuracy of the state
estimation. One method for a maneuvering target is the multiple model (MM) methods, which
seem to be the most promising [3].



In the MM methods, we prepare a set of stochastic systems that are describing various
movements of the target and estimate the state of the target based on the results of the candidates.
One stochastic system becomes one model. The main issue is how to combine the results of
models in order to find the state estimate. One branch of MM researches is the dynamic(or
switching) MM [1][4]. In the dynamic MM, the model change in time axis is assumed to be the
Markov process. The dynamic MM has been devel oped intensively and the representative results
are as follows: generalized pseudo-Bayesian (GPB) [1][4], interactive multiple model (IMM)
[1][4] and variable structure interactive multiple model (VSIMM) [1][5]. The VSIMM method is
the latest.

However, it is difficult to design the Markov transition probability matrix (MTPM) in the
dynamic MM method. In early works, the MTPM was determined by designer [4]. There is ho
genera rule for designing the MTPM and the MTPM is determined based on the designer's
experience or trial and error. As a recent research on VSIMM, Doucet and Ristic developed a
recursive MTPM estimation method [6]. However, consequently, the Markov jump property
disappearsin their work.

In this project, anew dynamic MM algorithm without Markov jump process is developed. The

neural network is adopted instead of the Markov jump process.

The combination of target tracking and neural network has been studied. One issue is the
neural network in the multiple target tracking. The aim is to use the Hopfield neural network for
the Data association [7][8][9][10]. Other issue is to use neural network for fuzzy logic [11].
Moreover, neural network is used for compensating the error due to the maneuver of target. The
Cho et. a proposed the adaptive Fuzzy tracker with error compensation using the neural network
[12]. However, there is no research on combination of neural network and system model
estimation in the dynamic MM methods.

This report is organized as follows. In Section 11, the target tracking and Kalman filter are
introduced. In Section I11, the system model estimation in the dynamic MM with Markov process
is summarized. In addition, the problem due to Markov process in the dynamic MM is presented.



In Section 1V, the MM with neural network is proposed as a solution for the problem due to
Markov process. The proposed method is developed based on the latest dynamic MM, VSIMM.
In Section V, the proposed method is verified through 2 dimensional target tracking simulations.
We compare the result of the proposed method and a VSIMM method. Finally, Section VI is

devoted to conclusion.



2. Target Tracking and Kalman Filter

In this section, target tracking is explained and the uncertainty factors in target tracking are
reminded. From the view point of the uncertainty in target tracking, Kalman filter is briefly

reviewed.
2.1 Target Tracking

The process of inferring the state of an moving object (a target) based on the sensor
measurements is called “"Target Tracking”. In air-surveillance systems, it is important to know
the position and the velocity of the aircraft of the interest. In order to infer the state of the target
aircraft, we should prepare sensors, such as radar, which give the data on the state of the target
aircraft. Based on the data from sensor, we determine the state of the target. Moreover, we use a
priori information of target movement such as the maximum acceleration of target. We can
mathematically design the dynamics of a known target. In summary, target tracking is a kind of
data processing based on a priori information and the sensor measurement from the target.

Figure 1 shows atarget tracking system.

A moving target

Sensor [

l

Measurements A priorl information

Data Processing

l

State of target

Figurel A Target Tracking System
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The difficulty of target tracking arises from the uncertainty in the sensor data and the future

movement of the target. Inthe next subsections, the uncertainty factors are explained.

2.1.1 Uncertainty in the target movement

Generaly, it is very difficult to exactly know the future movement of the target. If the current
state is exactly known and the target does not change its movement, we can predict the future
motion of the target. In this case, we can mathematically express the motion of the target using
the dynamic equations without uncertainty termsin the state space [2]. In practice, however, the
exact state of thetarget is not known and we can not guarantee that the target keep its movement.
In practice, we can only predict the state of the target with errors due to the incomplete

information.

2.1.2 Uncertainty in the sensor measurements

It is impossible to eliminate noise from the measurements of practical sensor systems. The
measurements from sensor are the only information that has the current status of the target.
However, al the sensor systems are not free from the noise. Therefore, the error can not be

eliminated and we should try to reduce the effect of the noisein the measurements.

2.2. Kalman Filter

The Kalman filter isthe popular estimation tool that considers the two uncertainty factors. In the
Kaman filter, the structural and the measurement uncertainty factors are treated in the plant and
the measurement models, respectively. In this section, the Kalman filter is explained from the

view point of the uncertainty factorsin target tracking.

2.2.1 The System Model

11



The Kaman filter is built based on the system model composed of two models: the plant
(dynamic) model and the measurement (observation) model. For the linear discrete moddl with

Guassian hoise, the system model can be formulated by:

x(k +1) = F (k)x(k) + G(k)v(k) 2.1
y(k)= H(k)x(k) + wk) (22)

where x(k)1 A" is the state vector, x(k)i A™ is the observation vector, A" is an n-
dimensional Euclidean space, v(k) and w(k) are the zero-mean white Gaussian uncorrelated
sequences, v(k) ~ N(0,Q(k)) and w(k)~ N(0,R(k)), and k is the scan index. The initial state
x(0) ~ N(x(0), P(0)) is assumed to be uncorrelated with v(k) and w(k). In the plant model, the

movement of the target is defined and in the measurement model, the process of measuring the

information of the target movement is determined.

In the equations (2.1) and (2.2), the noise vectors v(k) and w(k) are the uncertainty factors as
described in the previous section. The equation (2.1) without noise v(k) is the dynamic equation
that describes a motion of the target without external input. The noiseterm v(k) isinterpreted as
the unknown variation of the state. By defining the v(k), we can statistically model the
uncertainty in the plant model. For example, the v(k) is assumed to be a scalar zero-mean unit-
variance Gaussian, then the variation of the state is predicted to be in the interval (- 3,3) with a
confidence of about 99%. The equation (2.2) without the measurement noise w(k) isthe formula

that transforms the state of the target to the sensor measurement. In the real sensor systems, the
sensor measurement is contaminated due to various factors such as the weather, the hostile
environment and the limit of the sensor systems. The contamination of the measurements are
statistically modeled as the noise w(k). In other words, the accuracy of the measurement

depends on the measurement noise w(k).

2.2.2 Kalman Filter Update Process

12



Based on the system model, the Kalman filter estimates the state of the target based on the
following equations [2],[4]:

X(k k- 1) =F(k)x(k- 1|k- 1),%(0]0) =%(0) (23
P(k|k-)=F(k- )Pk - 1|k- DF " (k- 1)+ G(k- )Q(k- )G (k- 1) (2.4
K (k)= P(k k- )HT (k)H (K)P(k [k - DH T (k) +R(K)]"* (2.5)

X(k) = x(k k- 1)+ K (k) y(k)- H(k)x(k + k- 1] (26)
P(kIk)=[1, - K(K)|P(k k- 1), P(0] 0) = P(0) 2.7)

where P(k | k)= cov{x(k), x(k)} , X(k)=x(k)- X(k|k), and I, isthen” n unit matrix.

In the equation (2.3), the state of target at scank is predicted based on the plant model with the
information until scank-1. After the state prediction, the error covariance of the state is predicted
based on the state prediction and the plant model, which is given in the equation (2.4). In the
next step, the Kalman gain is calculated based on the state and the error covariance predictions,
which is given in the equation (2.5). Finaly, we obtain the state and the error covariance
estimationsin the equation (2.6) and the equation (2.7), respectively.

In Kalman filter update process, let's analyze the role of Kalman gain. In the equation (2.4), the
predicted error covariance is a function of previous error covariance and the plant noise
varianceQ(k). As the Q(k) increases, the Kalman gain increases. In the equation (2.5), the
Kalman gain is calculated. As the error covariance P(k |k - 1) increases, the Kalman gain
increases but as the measurement noise covariance increases, the Kalman gain decreases. As a
result, Kalman gain increases when the plant noise increases and the measurement noise variance
decreases. In the equation @.6), the state estimation is obtained by addition of the state
estimation and Kalman gain multiplied by the measurement innovation that is defined as the
difference between the current measurement y(k) and the measurement prediction,
H(k)x(k k- 2). As the Kalman gain increases, the measurement innovation have more

influence on the state estimate. The physical meaning of the measurement innovation is the error

13



between the current measurement and the measurement prediction based on the previous state
prediction. When the Kalman gain increases, we add more error to the state estimation and the
updated measurement becomes dominant in current state estimation and the effect of the state
prediction decreases. Remind that the Kalman gain increases when the plant noise variance
increases and the measurement noise variance decreases. The meaning of big plant noise
variance isthat the plant model has big uncertainty. Intuitively, the state predictionisnot reliable
when the plant model has big uncertainty. Therefore, when the big Kalman gain reflects the big
uncertainty in the plant model and the effect of the state prediction based on the plant model
decreases. Moreover, as the measurement noise variance is smaler and smaller, the sensor
measurement is more and more accurate. Intuitively, it is desirable that the updated measurement
has astrong influent on the current state estimate when the measurement is accurate. Since the
smaller measurement noise variance leads the bigger Kalman gain, the updated measurement has

more influence on the current state estimate.

2.2.3 Problems in the Kalman Filter for the Maneuvering Target

When a target maneuvers, the state estimate of Kalman filter becomes erroneous. When the
target changes its motion (dynamics) over the limit of the process noise, we call it “‘maneuver'.
When atarget maneuvers, the plant model should be changed. If we can not know the correct
plant model and the incorrect plant model isused in the Kalman filter update, the state estimate

ispredicted to be erroneous.

In the next section, the MM methods are introduced as a solution for the maneuvering target

tracking.

14



3. The Multiple Model Methods

In thissection, the MM method isintroduced for the maneuvering target tracking. First the main
idea of the MM methods is explained. Next, the idea of the MM is expanded to the MM with
Markov jump process and the VSIMM method. In addition, the weak point of the MM with the

Markov jump processis explained at the end of thissection.
3.1 The Main Idea of the MM Method

The key in the maneuvering target tracking is how to infer the plant model for the maneuvering
target. As explained in the previous chapter, it is difficult to know the plant model when the
target maneuvers. With the incorrect plant model, the state estimate is predicted to be erroneous.
Inthe MM methods, we prepare a set of the system models where the various movements of the
target are formulated. During the target tracking, each system model gives its own estimate.
After obtaining al estimate from all the system models, we score the system models and
combine the state estimates based on the scores.

We designn discrete system models. Let m denote i-th system model in the total system model
set, M ={m} for i=1,...n. The m (k) means a system model m is at scan k. The score of
m (k) is defined as b, (k). The local state estimate based on m (k) is defined as (k). The

overall state estimate is given by:

(k)= & b, ()% (k) (3.)
4 b(K)=1 (32)

The MM is the process of calculating the scores, b, (k)...., b, (k) and the state estimate of the
system models, % (k),..., %, (k). In this project, the process of scoring system models is called

system model estimation.

15



We can classify the MM methods based on the interaction among the system models [1],[4]. If
thereis no interaction among the system models, we call it the static MM, otherwise the dynamic
MM. The mainstream of the MM researches is the dynamic MM methods such as IMM [1],[4]
and VSIMM [1],[5].

3.2The Static MM Methods

In the static MM [4], the score of asystem model isgiven by:
b, (k)= P{m ()1 y*} (33)
where y* isthe set of the accumul ated measurements until scank, y,,..., Yy

In the system model estimation of the static MM, the score of amodel at scan k, m (k) is not
effected by the other models at scank-1, but the only itself at scank-1, m (k - 1). This means no

interactionsin the system models. The equation (3.3) [4] is rewritten as

b, (k)= P{m (k)] y*} = p(ynk)lyk_l’m (k- 2ok - 2 (34)
8 plylk) 1y, m (k- 2)

j:

N

where p() denotes probability density function. The term p(y(k)[y** m (k- 1) is the
likelihood of the current measurement, y(k). In the equation @.4), the denominator is a
normalization of the likelihood. As aresult, the score of the system model, m; (k), is effected by

the likelihood of the current measurement and the past own status, b, (k- 1).

3.3 The Dynamic MM Methods

16



In the dynamic MM, there are interactions among the system models. This interaction is built up
based on the Markov jump process. In this subsection, the Markov jump process is briefly
explained and thedynamic MM methods are introduced.

3.3.1 Markov Jump Process

In the Markov process [4,6], the current state is known from the most recent past state that we

can know. The Markov processis defined by:
P{a(t,) | alt).t £ t,.} = Plalt) ot} (35)
where qft, ) isthestate at time t, .

The Markov jump process (Markov chain) is a Markov process having the finite number of

states, q,,K ,q,. A Markov jump process is characterized based on the state transition
probabilities given by:
Poq = Plat)la;- 1) 36)

and the Markov transition probability matrix(MTPM) is given by:
P :{pq‘ ,q,.}' (37)

The change of states on timeis modeled by usingthe MTPM in the Markov jump process.

3.3.2 The Dynamic MM methods

In the dynamic MM methods, the interaction among the system models are built based on the
Markov jump process. In this case, we consider the system model in the dynamic MM as the

state in Markov jump process. Moreover, the transition from one system model to the other
model is defined based on the MTPM.

17



In the system model estimation of the dynamic MM method, the history (or sequence) of the
system model transition should be considered. Let | (k) ={m(1),K , m(k)|m(),K , m(k)i M} be
a sequence of the system models until scan k. Assume that 1, . (k) ={m(k),1,, (k- 2)} and

Iy, (k- 1)={m,, 1 (k- 2)} fork >2. Define b; ;(k) asanew score of the system mode! transition

from m, (k- 1) to m(k) [4], whichis give by:

,\
~

° T

OIROIR OIR OIR O|IFROIR, U W T

m(k) | m; (k- 1)1 (k- 2)}bj(k' 1)

pUY(K) 1. (k) Y JPAm () 1, (k- Do, (k- ) 38
where ¢ is a normalization constant. Since the system model transition is defined based on the

Markov jump process, the sequence I (k- 2) in P{m (k)|m; (k- 1), 1(k- 2)} can be ignored.

Using Markov jump process, the b, ; (k) is rewritten by:

1

b, ()= ply(K) 11,1, (L y*2b, b, (k- 2. 39
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In the equation (3.9), it is clear that the system model m; (k - 1) have influence on the system
model m(k). The score b, (k) is a function of the likelihood of the updated measurement,
ply(K)I1,, m, (), y**), the Markov state transition probability, p, ; , and the previous score of a

system model, b, (k - 1). The Markov jump process scores the effect from the previous system

model to the current. As aresult, the previous system model effects the current system model
estimation through Markov jump process.

Finally, the score of the dynamic MM methods are given by:

b=4b, . (3.10)

j=1
3.4 Variable Structure Interactive Multiple Model Method

In this subsection, the recent and advanced dynamic MM method, VSIMM is introduced. The
VSIMM and the IMM are compared and the system model estimation in VSIMM is explained.

3.4.1 The Difference of IMM and VSIMM}

The VSIMM has been developed in order to solve a dilemma in the IMM [1,5]. In the IMM
methods, as the number of models increases, the confliction among models causes increasing
estimation error. In the equation (3.9), the score of the system model at scan k is the sum of the
weighted scores of all the system models. However, the true system model is not expressed in
terms of all the system models but the limited number of the system models. As a result, the
system models except for the limited number of models that express the true system model
become the error terms. However, when we use small number of models, tracking performance
will be degraded. If atarget maneuvers and its movements cannot be covered with the small size
of mode set, the state estimation will be erroneous.
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In order to solve dilemmain the IMM, the VSIMM selects the system models used for the state
estimation [1,5]. Inthis case, we add the system model selection method to the state estimation
of the IMM. If al system models are selected for the system model estimation, the VSIMM and
IMM aresame [1,5].

3.4.2 System Model Estimation in VSIMM

Let (k)i M denote asystem model set, whose elements are the selected system models for the
state estimation, at scan k and S(k) ={s(1),K , s(k)} is the selected system model set sequence
until scan k. Let m,) denote a system model in the selected system model set, s(k). Let
H(k)={m(@), K , mk)| m{1)T s(1),K ,m(k)T s(k)} be a sequence of the selected system model.
Define H , . (k) ={m (k). H,, (k- 1)l m (k)T s(k)} as a sequence of the selected system model

with m(k) and m, (k- 1), where H, (k- 1) ={H (k- 2), m; (k- 2)|m;(k- 1)T s(k- 1)}

The b, ; (k) for the VSIMM isgive by:

1] 1l 1l
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where ¢ is a normalization constant. Since the system model transition is defined based on the

Markov jump process, the sequence H (k- 2) in P{m (k)|m (k- 2),H (k- 2)} can be ignored.

Using Markov jump process, the b, ; (k) is rewritten by:

p(y(k)le‘,m (k), yk-l)Ji,jbj(k_ 1) . (3.12)

]

bi,j(k):

olr

Finally, the score of the VSIMM methods are given by:

an,
b,=2— (3.13)
a bi,j

1 j=1

Q3o

There is an important assumption in VSIMM: the admissible property [1,5]. In the VSIMM
methods, the system model sequence, H(k) and the system model set sequence, S(k) are

updated at each scan. In this update, only the admissible system models and system model sets
are selected. Consider the admissible system model in the variable structure MM. Assume that
the system model set sequence, S(k), is an admissible system model set sequence. If S(k) is an

admissible system model set sequence, then for every m), we can find at least one my ;) that
satisfies P g4y * O fort=1,...k. Assume the system model sequence, H (k), should also be an
admissible system model sequence. If H (k)={m(L),K , m(t- 1),m(t),K , m(k)} is an admissible
system model sequence, thenp .. * 0 fort=2,...k.

3.4.3 The System Model Selection Methods

Three system model selection methods presented in [1,5,14]: Active Digraph (AD), Digraph
Switching (DS), and Adaptive Grid (AG).
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In the AD and DS methods, we select a set of system models. In the AD methods, the system
models are chosen based on their likelihood values. The predefined number of system modelsare
selected and used in the state estimation. In the DS methods, the geometry of the selected system
model set is predefined. We compare the overal likelihood values of the predefined system
model setsand choose the system model setsfor the state estimation.

In contrast to the AD and DS methods, the AG method is built based on the parameter of the
system model. The output of the AG methods is to find the key parameter that separating the
system models. In the AG methods, if the key parameter is changed, we think the system model
is changed. As aresult, the system model set is updated when the key parameters of the system

models are changed.
3.4.4 Three Parameters for the System Model Estimation in VSIMM

In the equations (3.9), three parameters are required for calculation of the score. The three score

is explained based from the practical view point.

The first parameter is the first factor of the right side of the equation (3.9),
plY(K)[ 1, m (k). y*), which is the information from the updated measurement. The first

parameter isthe likelihood of the current measurement, which is calculated based on the current
measurement and the prediction of measurement based on the previous system model
information. If the measurement and the measurement prediction become increasingly similar,
the first parameter value also increases.

The second parameter is the second factor of the equation (3.9), P which is defined in the

MTPM. This probability valueindicatesthe tendency of the change of the target movement. If a
system model moves based on a system model, m, (k - 1), then the system model for target

movement at scank, is predicted to be m (k) with probability of the second score. If the second

score p . is near 1, the system model of the target should aimost change from m, (k - 1) to

m (k).
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The third parameter is the third factor of the equation (3.9), b, (k - 1), which are the past score.

In Markov jump process, we should know the most recent information in order to know the
current information. Thethird parameter is the most recent information in Markov jump process.
If one of the three parametersis not correct, the state estimation is erroneous.
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4. Multiple Model Method with Neural Network}

In thissection, a problem in the dynamic MM is explained and analyzed. Based on the problem,
asolution is proposed. Thesolution is built based on the neural network.

4.1 System Model Jump Delay

4.1.1 Background

In the maneuvering target tracking applications, it is difficult to know the exact system model
transition information - in this case, the second parameter value is not known. In order to obtain
the exact system model transition information, the designer should know the MTPM for the
specific maneuvering motion in the application. However, the maneuvering motion only depends
on the target. The target decides everything related to maneuvering motion such as when it
starts/stops maneuvering, how rapidly it maneuvers, how frequently it maneuvers, and so on. In
thiscase, the designer can not know the probability that the target changes its own motion from
one system model to the other system model. As aresult, it is difficult to know the MTPM in the
real application. However, in the VSIMM, the MTPM s set by the designer's value, which is
defined by the designer before target tracking. In this section, the problem in the dynamic MM is
explained and analyzed.

4.1.2 Models for System Model Transition in the Dynamic MM
Assume that a system model set M is prepared. All elements of M are connected with system
mode transition probability. Every system model is connected at |east one model except itself

with non-zero system model transition probability.

Definition 1: Direct Distancefrom m;to m, it j
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The direct distance of two system model from m, to m is defined as dd(m,mj) =0 for

Pmm =0 and dd(m,mj):lfor Poym * 0.
Definition 2: Shortest Trandtion Path from m;to m, it j

The shortest path form from m, to m, J(m ,m; ) is defined as the system model jump sequence
with the smallest number of jumps from m; to m. A system model m can only jump to a
system model m,whenp,, . * 0.The J(m ,mj) includes the stating system model m and the

destination system model m .
Definition 3: The Length of Shortest Transition Pathfrom m, tom, i* j

The length of the shortest path J(m ,m, ) L(m,mj), defines as I-1, where | is the number of

elementsin J(m,mj).
Definition 4: Indirect Distancefrom m, tom, i?® j
Theindirect distance of two system model, id(m,mj), is defined as id(m ,mj): L(J(m,mj)).

Example 1

The Figure 2 shows an example of system model set for a dynamic MM. The MTPM for The
figure 2isgiven by
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(4.1)

A el en ey en} e\ eni?

D> D> D> (D>

First, check the direct distance, shortest path, and indirect distance of 1) A from B 2) from A to
D. First, the direct distance is given by dd(A B) =1 and dd(A, D) = 0. Second, the shortest path

isgiven by J(AB)={AB}$and J(D,A)={AB,C,D}. Findly, the indirect distance is given
by id(A B)=J(B,A)=1and id(D,A) = J(D,A) = 3.

0.5 0.5 0.5 0.5

0.25

P

"—U 525 U 0.25 U= 0.5 \E

Figure2 A System Model Set with Transition Probability

4.1.3 A Problem in the Dynamic MM

In the dynamic MM methods, the system model transitionis restricted due to the MTPM. In the
IMM, p . . =0 means that the direct system transition from m, to m is impossible. In the

VSIMM, p ., =0 meansthat m is not admissible system model of m; - m is excluded from

the candidate system model set for the state estimation.
Theorem: If atarget changes its dynamic model and the indirect distance from previous to the

current systemmodel of the target is greater than 1, the system model estimation cannot give the
true current system model for estimation.
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Proof: Assume that the system model jump from m, (k- 1) to m(k) when a target maneuvers.

The score equations (3.4) and (3.9) have the term Py s the Markov transition probability. If
idim,m)>1, thenthe p_ . =0. Asaresult, thescore of m(k) is zero and the current real

system model m can not be selected.

The indirect distance from a system model to a system model is defined based on the Markov
transition probability. If the designer does not know the exact value of the Markov transition
probability, then the tracking can not be optimal. However, itis impossible for designer to know

the exact value of the Markov transition probability.
Example 2

Consider the system model set in the Figure 2. A target is moving with system model A and
suddenly changes its system model to D. The direct system model jump from D to A is

impossibleduetop,, =0.

4.1.4 System Model Jump Delay

The unknown MTPM causes the error in the state estimate. With wrong second parameter, the
score of the system model is not correct. Now the situation after selecting wrong second
parameter is explained. Although the system model estimation is not correct due to the wrong
MTPM at the beginning of maneuvering, the system model estimation is being improved more
and more astime goes on. Assume that the target starts maneuvering and the system model of the

target is changed from m; (k - 1) to m(k). Inthis case, the first parameter value of m(k) should

be the largest. However, the MPTM is not well-designed for the system model jump from
m (k- 1) to m(k) such that p, =0 or p, »0.In this case, since the small p,_

decreases the second parameter, the score is predicted to be small. Next, consider the score of
m (k - 1) . Thefirst parameter valueis small, sincethe true system model! is changed from m, to

m . The small first sub-score makes the score of m to be small. Asaresult, it is predicted that
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thesystemmodel set that includes neither my(k) nor m, (k) , are selected for the state estimation.
Assume that the system model set that includes m (k) is selected for the state estimation. In this
case, the system model estimation isnot correct at the beginning of maneuvering, since m (k) is

selected instead of the true system model m(k). However, if p, . >>p, . and the first

parameter is kept largest, then the score of m(k +1) increases. As time goes on, the true system
model, m is selected for the state estimation. In this case, the system model estimator needs

additional scans to find the true system model. In this dissertation, it is call the system model
jump delay.

Example 3

Consider the system model set in the Figure 2. When atarget changesits system model from A to
D, itisimpossible to select D in thedynamic MM. However, it is possible that the system model
changes through the shortest path, J(D,A)={AB,C,D}. At the next scan after the
maneuvering, it is possible for the system model B to be selected. In this case, id(D,A) =3 and
more scans are needed. Next scan, the system model B can be selected. After the system model B
is selected, the next model to jump isthe system model C. At the next scan, the system model D
is predicted to be selected, which is the true system model for state estimation. As aresult, at
least, three scans are required for searching the true target. In other words, more than three scans

arerequired.
4.1.5 A Solution: Neural Networks

In the dynamic MM, the MPTM s selected by designer. Although the MPTM is not generally
known, the designer determined its value based on the designer's experience or trial and error. As
a result, the tracking error increases due to the inexact MTPM. Therefore, it is required to
eliminate Markov jump process in the dynamic MM. In order to reduce the system mode jump

delay, the Markov jump processis eliminated.
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Instead of Markov jump process, neural network gives the system model transition information.
An aternative method is needed for the MTPM. The MTPM has the system model transition
information. As aresult, the alternative method should have a function that extracts the system
model transition information. The neural network is a method for searching recognition and
classification. The suitable system model for the current situation is found through the searching
function of neural network.

In thisproject, anew system model estimation method using neural network is proposed instead
of (3.9) and (3.12).

4.2 Neural Network in the Dynamic MM

In this subsection, the process of adopting neural network into the dynamic MM is proposed.
First, therole of the neural network is explained. Second, the neural network is designed for the
dynamic MM. Third, the neural network training is explained. Lastly, the advantages in adopting
neural network are presented by comparing the VSIMM.

4.2.1 Assumptions- Prior Knowledge on the Target Movements

Before designing the system model estimation method, we make two assumptions on target
movements.

The first assumption is that we know the limit of target movements. The target decides
everything on its own movement but cannot make a movement that is over its movement limit.

For an extreme example, The airplane cannot suddenly stop and keep its position.
The second assumption is that we know the representative moving patterns of target. For

example, acar on the cross has the four possible moving patterns- 1) turn left, 2) turn right, 3) go
straight, and 4) stay.
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The first assumption is reasonable. If we do not know the limit of the target movements, we can
not design the system models for the unlimited movements. The system models are defined
based on the unknown target movement parameters such as the maximum acceleration and the

maximum turn rate.

In order for the second assumption, the representative trajectories of the target are required. A
trajectory of the target implies the moving patterns. From the past movement, we can know the

movement patterns of the target.

4.2.1 Role of Neural Network

Consider the backpropagation (BP) neural network [15, 16]. The backpropagation agorithm is
for a multiple layer neural network, where a complex task can be learned [15, 16]. Since the
information of the system model transition is hidden, implicit, and complex, the backpropagation

network is chosen.

Activation function ' f; ... Jfus In
|nDUt, p é %‘ Output, qNN
Weight vectors : W, Wy

Figure3 Backpropagation Neural Network

Consider a BP neura network with N layers. The BP network has N weight matrices, {W}
i=1,...,N. Each layer has aactivation function, f, for i=1,...,N. Let p denote the input of the BP

network. The output of the BP network, q,, isgiven by
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Onn = fN(WNfN»l(K \sz1(\N1p))) 4.2
Figure 3 showsthe BP network.

The objective of neural network isto find adesired output g, for an input p. The pair {p, qD} is
called training pair. Suppose that we have L training pairs, {pl,qul},K ,{pLqu,L}- The cost
function of the BP network, J is given by

J=a (qD,i - qNN,i)T(QD,i - qNN,i) 4.9

[N

where q,,; is the output of the BP neural network for input, p,. We determine the weight

matrices, W, K ,W, that minimize the cost function J, which is given by
3% $a33® min (4.4)

Thisisakind of least square estimation [17] in deterministic sense. The process of determining
the weight matrices is called neural network training. The neural network is trained in iterative
way. The weight matrices are updated and we calculate the error between the desired output and
the output using the updated weight matrices, e =qg - Jyy - ThiS process is repeated until the

stop condition of training is satisfied. In general, there are two stop conditions. Oneisthat |er| is

within the predefined tolerance e , that is, |e;| < e, and the other is that the number of iterations

are over the predefined maximum number of iterations.
4.2.2 Neural Network Based Dynamic MM

To reduce system model jump delay, the neural network isused instead of Markov jump process.
The eguations (3.1) is rewritten as
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R(k) = & fyos (% (K) (45)

i=1
where f,,; isthescoreof m that isimplemented based on the neural network.

The f,; isimplemented by using the neural network. In the equation (4.5), the neural network

givesthe score of the system model. In the previoussection, the scores of the system models are

calculated in the recursive form based on the Markov jump process.

Theinputs of the f,,; arethefirst and the third parameters described in the subsection 3.4.4.
Thefirst parameter is the updated information from the new measurement, |1, » Which is not

changed due to the design of the system models. The third parameter is the information of the

selected system models at the previous scan denoted by | The score of a system model

previous *

m(k) at scank isgiven as

bi = fNN,i(I updated ? | previous)' (46)

The cost function of the neural network for the dynamic MM, J;, » iSdeigned as

fani (K% (k)2 @7

1 %]

Qos

JDynMM = ?(k) T

The objective is to minimize the J;,,,, With respect to the weight matrices of neural network,

W,K W, , whichisgivenas

Joywm ¥4 74FFa® min . (4.8)
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4.2.3 Neural Network Design

The neural net design isthe process of determining the inputs, outputs of the neural network and

the structure of neural network.

In the neural network design, the system model set is the key element. In the VSIMM, three
methods for system model set grouping was proposed [1, 5, 14] and briefly described in the
subsection 3.4.3. Three different methods generates the different system model set deign.

In AD and DS methods, the system models are designed in discrete manner. In these cases, the
system models are defined in the discrete set. For the AD methods, the system models with
highest scores are selected. For the DS methods, the system model group with the highest score
is selected. In the DS methods, the geometry of the selected system model group is fixed and the
scores of groups are compared but in the AD methods, only the system models with highest
scores are sel ected without considering the geometry of the selected system model group.

In the AG methods, the system models are defined in the continuous space. The distance
between the neighbor system models are variable. The spacing process is adaptively carried out
The AG methods seem more flexible than the AD and the DS methods.

The information type of the selected system model depends on the system model design.
Different types of the system models cause the different types of the neural network inputs and

outputs.

The system model set selection method described in the subsection 3.4.3 is taken into account in
designing inputs and outputs of neural network. If the AG method is used in the system model
selection, we treat the system model in the continuous space. If the AD or DS method is used in
the system model selection, we treat the model in the discrete space.

The design methods of the inputs and the outputs of f,; are divided into two methods: model

based design and parameter based design.
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M odel Based Design

The model based design is focused on not the key parameter but the system model, which is
similar to the AD and the DS methods in VSIMM. The system models are designed in discrete
manner and the number of system models is finite. In this case, the neural network selects the

system model for the state estimation. The input to f,; is defined by Pioga = {1 pmessM(k - 1)

The output of f; isgivenby Gy ={by, o}

Parameter Based Design

In the parameter based design, the output of neural network isthe key parameter that separating
the system models. In this case, the input to fy,; is given by p,.. :{Iupdated o] (k- 1)}, where

q(k - 1) isthe key parameter of the selected system model at scan $k-1$. The output of f; is

given by qparal = {bq (k)} .
4.2.4 Neural Network Training

The neural network training isto find the weight matrices of the neural network, W,,K W, that

minimize the equation (4.8).
Preparethe Training Trajectories

Thefirst step of neural network training isto prepare the training trajectories. In the equation
.2

(4.7), the squared error, €, = $((k) 4 fu ()% (k)2 . isto be minimized. In the errore,,, the
e =1 2

true but unknown value, x(k), should be known. The value x(k) is obtained from the training

trajectories.
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For generating the training pairs, training trajectories that contains the representative moving
patterns of the target is required. If the information in the training scenarios is not enough to

cover the various maneuvering movements, then the state estimation becomes erroneous.

The number of training pair should exceed the number of the total weights in the BP neural
network [18].

Simulation of Each System Model by Using the Training Scenarios

In the second step, the error e, for training pairs are calculated. Prepare the filter bank: one
filter is one system model. After the simulations of all filters are carried out and % (k) for

i=1,...,n areobtained.
Training Pair Generation

After the simulation, the training pair is extracted from simulation data. For all system models,

the e, can be calculated. Thetraining pair is selected based on e, . This is a searching process.

The system modelswithsmall e, are searched and sel ected.

The training pair depends also on the system model design. If the AG method is used, the
training pair is described in the continuous space. If the AD (or DS) method is used, the training

pair is described in the discrete space.
Neural Network Training

In the last step, neural network is trained based on the training pair. In genera, there are two

termination conditions: e, and the number of maximum training-iterations. The term ¢ is

related to the error performance. Thelimit of iteration is related to the training time. If the weight
changeis small and the error e, converges, two cases are predicted. The first case is that the

weight isfixed with global minimum of the cost function. The other case is that the weight isin
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the local minimum. In other words, although the error of the neural network train converges, the
neural network is not optimal for the cost function [18]. Therefore, in the neural network

training, both e, and the number of maximum training iterations should be checked. The neural

network training process isshownin Figure 4.

Consider the meaning of neural network training. In the dynamic MM with Markov jump
process, system model estimation is performed based on the Bayesian approach. The system
model probability is recursively updated. All information except for the MTPM is easily
obtained. Although the MTPM is not available in system model estimation, the MTPM is also
predefined or estimated. However, in the system model estimation using neural network, Markov
jump process is eliminated. This means that the additional information corresponding to the
MTPM is obtained through the neural network training. The training data reflect priori
information of the target movement to the system model estimation, instead of the MPTM.

In the neural network training process, it is the most important to design the training trajectories.
The training trajectory depends on the application. For example, the moving patterns of an
airplane and a submarine are different. For each case, we find or design the trajectory that

includes the representative movements of the target.
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Figure4 The Neural Network Training Process

4.2.4 Neural Network Structure

The multiple layer BP network can approximate almost any function if the enough hidden layer
is prepared [18]. Generally, however, it is difficult to give the number of hidden layers and the
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number of the neuronsin the hidden layer [18]. Other neural network such as Hopfield network

and bidirectional associative memory isknown approximately [19].

A guidelinefor the BP neural network structureis that the number of parametersthat is changed
during the neural network training, such as weight, should fewer than the number of training
pairs[18]. The other guide line is that that too small nhumber of neurons in hidden layer cannot
approximate the complex function [18]. Asaresult, the number of hidden layers and the number

of neurons are selected by checking the e, .

4.2.5 Neural Network and VSIMM}

The advantage of the VSIMM methods is that the selected system models are used in the state
estimation. The proposed method is applicable to variable structure MM methods by adding the
systemmodel selection process. If the system models are selected based only on the scores, it is
similar to the AD method. If the system models are selected based on the system model group
whose geometry is predefined and fixed, it is similar to the DS method. If the system modd is

updated with adaptive manner in the continuous space, it is similar to the AG method.

4.3 Discussions

Consider the situation when a target is moving with a untrained moving pattern. An attractive
property of neural network isthat, for the untrained input, the neural network gives the output of
the input that is the most similar to the untrained input. Due to this property, the neural network
is adaptive for missing and noisy data[15, 16, 19]. If the untrained moving pattern happens, the
neural net givesthe system model that isthe most similar in the trained patterns.
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5. Simulations and Results

In thissection, two simulations are shown to verify the proposed method.
5.1 Simulation Model

In both simulations, an object moving in 2-dimensional spaceis tracked.
5.1.1 Plant and Measurement Equations

The piecewise constant white acceleration model [4] is used for the Kalman filter. The state

vector is defined as x =[x,,%,,, %] . The measurement vector is given by y =[y,,y,] . The

system noise vector isw = [w;, w,]" and the measurement noise vector isv = [v,,v,]". The system

and the measurement models are given by

F O, 0w (k)o
xk+)=a o)+ & ()g 5.1)
&0, Fi &ow, (k)
¢l 0 0 Ou
K)=a (k) + vk 5.2
W)=g) o 4 o)+ (52)
Dtg 0 0 el 2l
where F :el E,Ozzgo E G—eth U and Dt is the constant scan interval. The
o 14 o o €ot d
: . o él Ou .
measurement noise covariance matrix isgivenby R, =1,, 1, = g) 1Q. The system noise block
a
: - éwl, O, u
covarianceisgivenb =& q-
R DTS

5.1.2 System Model Design
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The system model is defined based on the noise variances of w; (k) and wy(k), s> ands2 . The

rangesof s, and's; aegiven by 1£s,s: £19. In both smulations, the system model

m,, (k)isdefinedby m_,(k)° {s2 =i,s2 = j} at scank.

Wy

OnDSVSIMM

w OO0

O

Geometry of Selected
System Models

¥

-rOC00O
OO0
«+ OO0
s+ OO0

System Model Space

Figure5 System Model Spaceand Geometry of the Selected System M odelsin theDSVSIMM Simulations

In the DS VSIMM, the tota system model set is defined by
M o :{m,j |i =5a- 4,j =5b- 4} for a,b=1K ,40. Let mf‘j denote the neighbor models of
m ;. In general, the mf‘j are composed of 4 system models- m_,;, m,,;, m;,,axd m ;.
For some specific models such as m;, m,;, m,, and m, ,, j=2,...,39, there are three

neighbor models and for m,, m ,,, m,,, and m,,,,, there are only two neighbor models. The

system models for state estimation are determined by choosing one system model named the
center model. After the selection of the center model, neighbors are determined based on the

location of center model. Figure 5 shows the system model space and geometry of the selected
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system models of the in this smulation DS VSIMM simulations. The MTPM is given by

Pm m =06 and Pt m =@- Pm, m, )/ ;, Where n ; isthe number of neighbors of m ;. The

system models whose center model has the maximum score are sel ected.
On Neural Network

For the proposed method, only on system model is used in the state estimation. In other words,
only one system model is selected in the system model estimation. The value of the noise

variances of w; and w, is not the index but the real value given by 1£s? s £19. The

inputs of the BP network at time k arethe previously selected system model and the likelihood of
the current measurement based on the previously selected system model. The currently selected
mode is the last parameter and the likelihood value is the first parameter at the next scan. The
neural networks used in both simulations are the BP network with one hidden layer with 16

neurons.
5.2 Simulation |
5.2.1 Introduction
The Objectives of the simulation | are given asfollows.
® Show how to build the proposed method.
® Show the system model jump delay in DSVSIMM.
® \Verify the proposed method.
In the simulation, the system model jump delay in DS VSIMM is shown by checking the

transition history of the center system model. In order to verify the proposed method, the M SE of
the proposed method, DSVSIMM [1,5], and the a - b filter [4] are compared.
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5.2.2 Neural Network Training

The training scenario is illustrated in Figure 6. The training scenario include the circle

movements and line movement. Thetraining information isas follows.

® \item Number of training pairs: 60 pairs
® \item Number of the maximum iteration : 1000 times

® \item Check Point : number of weights 16 < Number of training pairs 60

As discuss in the previous chapter, the number of the parameters in the BP neural network
should be fewer than that of training pairs.

-+ U

0 1000 2000 3000 4000 000 6000 TOOO0  EO00 9000
Positicn {m)

Figure6 TheTraining Trajectory in Simulation |

5.2.3 Test Scenario
Thetest trgjectory isshown in Figure 7. In thetest scenario, when the target turns, it is predicted

that maneuver happens. There are four maneuvering periods: 1) scan 11~13, 2) scan 21~23, 3)
scan 31~33 and 4) scan 41~44.
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Figure7 TheTest Trajectory in Simulation |

5.2.4 Results

Theresults are obtained after 50 Monte-Carlo runs.

System Model Jump Delay

Figure 8 shows the history of the selected system model of the proposed and the center system

model of the DS VSIMM methods. The system model jumps of NN-VSMM in maneuvering
preriods are faster than those of the DSV SIMM. This isdueto the system model jump delay.

Solid ‘Tha Pruposed Mathod
Datted : T

5V SN

Cenber s stom model

Figure8 The System Model Jump
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Performance Comparison

In Figure 9, the mean square errors (MSE) of the proposed and the DS VSIMM methods are
compared. In anon-maneuvering period, from scan 1 to scan 10, the MSE of both methods are
similar, but in the maneuvering periods, the proposed method is less erroneous than the DS
VSIMM. The MSE in maneuvering periods is given in the table \ref{ TableresutIMSE}. As a
result, the system model jump delay by using the proposed method is reduced.
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Figure9 The M SE of the Proposed Method and DSVSIMM

Scan(Maneuvering periods) The Proposed DSVSMM a-bfilter
11-13 15791 4.6258 31.0747
21-23 1.6138 3.7418 31.1780
31-33 1.5083 2.9099 30.9601
41-43 15944 2.5968 31.1208

Tablel The MSE in Simulation |

5.3 Simulation Il

5.3.1 Introduction

The Objectives of thesimulation Il are given asfollows.
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® Show theeffect of thetraining pair.
® Compare the DS VSIMM method and the proposed methods with different training

scenarios.
The simulation focuses on the effect from the training scenario. As explained in the previous
chapter, the representative training scenario is required. In the simulation, three training
scenarios are prepared. First scenario is not sufficient to cover complex movement. Second
scenario can covers complex movements. The last scenario is mix of the fist and the second. The
performance of thetraining scenariosand DSV SIMM are compared.

5.3.2 Neural Network Training

Three training scenarios are prepared- 1)Line movements, 2)Circle movements, and 3)Line +
Circle movements. The training scenarios are given in Table 2 and Figures 10, 11, and 12.

Line Scenario

Theline scenario isthe simplest. Thereis no change of the acceleration. The simulation model in
the equations (5.1) and (5.2) is predicted to be covered the movement in line scenario with the
small system model jump.

CircleScenario

The circle scenario is more complex than the line scenario. Moreover, more system jump is

predicted than the line scenario.

Linet+CircleScenario

This scenario isthe mixture of the line and the circle scenarios. In thissimulation, thisscenariois
mainly compared with the circle scenario.
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Training Descriptions
Scenario

Line Scenario | Initial position: (0,0)
Velocities : (200, 100), (-200, 100), (200, -100), (-200, -100)

Circle Angular velocity: p/10

Seenano | podius: 50, 100, 150, 200
Line- Initial position: (0,0)
Linet+Circle o
Scenario Velocities : (200, 100), (-200, -100),

Circle- Angular velocity: 10/p, Radius: 50, 100

Table2 Training Scenarios
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Figure10Training Trajectories: Line Scenario
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Figure12 Training Trajectories: CircletLine Scenario
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5.2.3 Test Scenario

The three proposed methods with different training scenarios with the trajectories illustrated in
Figures 13, 14, 15, and 16 are used in this simulation. Three scenarios are similar to the training

scenarios and one scenario isdifferent.

11p
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10.6
10.4F
10.2F

10p
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9.6

9.2

9 : : r L : : r : :

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure13 Test Scenario Trajectory: Line
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Figure14 Test Scenario Trajectory: CircletLine
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Figure15 Training Scenario Trajectory: Circle
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5.3.4 Results

The comparison of the M SE of four methodsis shown in Table 3.

500

-500 -

Figure16 Training Scenario Trajectory: Untrained

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

) Train Scenario . . . .
Test Scenario | Line Circular Line+ Circle
Fiters

_ NNVSMM 1.0301 1.1948 11154
Linear

DSVSMM 1.1573 1.1469 1.1472

Gircl NNVSMM 33.8047 3.1184 2.0502
rcle

DSVSMM 5.9898 5.9647 5.9898

) i NNVSMM 23.2437 6.0346 2.8477

LinetCircle
DSVSMM 5.2321 5.2337 5.2366
) NNVSMM 16.8466 1.5515 1.6559
Untrained
DSVSMM 2.5445 25178 2.5463

Table3 The M SE of thetest trajectories
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LineTest Scenario

The MSE of VSIMM and all proposed methods shows similar performance. Especialy, the
proposed method with only circle train scenario does not give the erroneous estimation.

Circle Test Scenario

The proposed method with the line train scenario is significantly erroneous. Other proposed
methods shows better performance than DS VSIMM. Moreover, the proposed method with the
linetcircle scenario shows the best performance. The detail comparisonisin Figures 17 and 18.

Linet+CicleTest Scenario

The DS VSIMM shows better performance than the proposed method with the circle train
scenario. Asaresult, the selection of training scenario isimportant.

Unknown Test Scenario

The proposed methods with the circle scenario and the linet+circle scenario show better
performance than DSV SIMM.

From the result, it is predicted that
® thetraining scenario should be cover varioustarget movements, and

® for untrained trgjectory, the proposed algorithm shows better performance than DS
VSIMM.
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5.4 Discussions
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In Simulation I, the proposed method has less system model jump delay than the DS VSIMM.
This is directly connected to the estimation error reduction. In Simulation I, the effect of
training scenario is analyzed. The training scenario with only one moving pattern is not suitable
for covering the various moving patterns. The Circle + Line training scenario is better than the
Circle scenario. Moreover, it is shown that the untrained moving patterns can be dealt with
neural network- the MSE of DSVSIMM is the second largest.

6. Conclusion

In thisproject, anew system model estimation method using neural network has been proposed.
Firstly it has been shown that the Markov jump process causes system model jump delay. Instead
of Markov jump process, aneural network in system model estimation is employed for reducing
the system model jump delay. In representative simulations, it is shown that the reduction of
system model delay in the proposed method is achieved. Moreover, the effect of the neural
network training scenariosfor generality is analyzed. It also is shown that the untrained moving
patterns can be dealt with neural network.
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